transformers
Installation
You need to install the transformer
, datasets
and torch
libraries to be able to use these models in Outlines, or alternatively:
Outlines provides an integration with the torch
implementation of causal models in the transformers library. You can initialize the model by passing its name:
from outlines import models
model = models.transformers("microsoft/Phi-3-mini-4k-instruct", device="cuda")
If you need more fine-grained control you can also initialize the model and tokenizer separately:
from transformers import AutoModelForCausalLM, AutoTokenizer
from outlines import models
llm = AutoModelForCausalLM.from_pretrained("gpt2", output_attentions=True)
tokenizer = AutoTokenizer.from_pretrained("gpt2")
model = models.Transformers(llm, tokenizer)
Using Logits Processors
There are two ways to use Outlines Structured Generation with HuggingFace Transformers:
- Use Outlines generation wrapper,
outlines.models.transformers
- Use
OutlinesLogitsProcessor
withtransformers.AutoModelForCausalLM
Outlines supports a myriad of logits processors for structured generation. In these example, we will use the RegexLogitsProcessor
which guarantees generated text matches the specified pattern.
Using outlines.models.transformers
import outlines
time_regex_pattern = r"(0?[1-9]|1[0-2]):[0-5]\d\s?(am|pm)?"
model = outlines.models.transformers("microsoft/Phi-3-mini-4k-instruct", device="cuda")
generator = outlines.generate.regex(model, time_regex_pattern)
output = generator("The the best time to visit a dentist is at ")
print(output)
# 2:30 pm
Using models initialized via the transformers
library
import outlines
import transformers
model_uri = "microsoft/Phi-3-mini-4k-instruct"
outlines_tokenizer = outlines.models.TransformerTokenizer(
transformers.AutoTokenizer.from_pretrained(model_uri)
)
phone_number_logits_processor = outlines.processors.RegexLogitsProcessor(
"\\+?[1-9][0-9]{7,14}", # phone number pattern
outlines_tokenizer,
)
generator = transformers.pipeline('text-generation', model=model_uri)
output = generator(
"Jenny gave me her number it's ",
logits_processor=transformers.LogitsProcessorList([phone_number_logits_processor])
)
print(output)
# [{'generated_text': "Jenny gave me her number it's 2125550182"}]
# not quite 8675309 what we expected, but it is a valid phone number
Alternative Model Classes
outlines.models.transformers
defaults to transformers.AutoModelForCausalLM
, which is the appropriate class for most standard large language models, including Llama 3, Mistral, Phi-3, etc.
However other variants with unique behavior can be used as well by passing the appropriate class.
Mamba
Mamba is a transformers alternative which employs memory efficient, linear-time decoding.
To use Mamba with outlines you must first install the necessary requirements:
Then you can either create an Mamba-2 Outlines model via
or explicitly with
import outlines
from transformers import MambaForCausalLM
model = outlines.models.transformers(
"state-spaces/mamba-2.8b-hf",
model_class=MambaForCausalLM
)
Read transformers
's documentation for more information.
Encoder-Decoder Models
You can use encoder-decoder (seq2seq) models like T5 and BART with Outlines.
Be cautious with model selection though, some models such as t5-base
don't include certain characters ({
) and you may get an error when trying to perform structured generation.
T5 Example:
import outlines
from transformers import AutoModelForSeq2SeqLM
model_pile_t5 = outlines.models.transformers(
model_name="EleutherAI/pile-t5-large",
model_class=AutoModelForSeq2SeqLM,
)
Bart Example: