Skip to content

Ollama

Installation

To be able to use Ollama in Outlines, you must install both Ollama and the optional dependency libraries of the model.

  • To download Ollama: https://ollama.com/download
  • To install the ollama python sdk: pip install outlines[ollama]

Consult the ollama documentation for detailed information on installation and client initialization.

Model Initialization

To create an Ollama model instance, you can use the from_ollama function. It takes 2 arguments:

  • client: an ollama.Client or ollama.AsyncClient instance
  • model_name: the name of the model you want to use

Based on whether the inference client instance is synchronous or asynchronous, you will receive an Ollama or an AsyncOllama model instance.

For instance:

import ollama
import outlines

# Create the client or async client
client = ollama.Client()
async_client = ollama.AsyncClient()

# Create a sync model
model = outlines.from_ollama(
    client,
    "qwen2.5vl:3b",
)

# Create an async model
model = outlines.from_ollama(
    async_client,
    "qwen2.5vl:3b",
)

You can find the list of available models on the Ollama library.

Text Generation

Once you've created your Outlines Ollama model instance, you're all set to generate text with this provider. You can simply call the model with a prompt.

For instance:

import ollama
import outlines

# Create the model
model = outlines.from_ollama(ollama.Client(), "qwen2.5vl:3b")

# Call it to generate text
response = model("What's the capital of Latvia?")
print(response) # 'Riga'

Ollama also supports streaming. For instance:

import ollama
import outlines

# Create the model
model = outlines.from_ollama(ollama.Client(), "qwen2.5vl:3b")

# Stream text
for chunk in model.stream("Write a short story about a cat"):
    print(chunk) # 'In...'

Additionally, you can use Ollama with the Vision input if you're running a vision model such as qwen2.5vl. For instance:

import io
import requests
import PIL
import ollama
import outlines
from outlines.templates import Vision

# Create the model
model = outlines.from_ollama(
    ollama.Client(),
    "qwen2.5vl:3b"
)

# Function to get an image
def get_image(url):
    r = requests.get(url)
    return PIL.Image.open(io.BytesIO(r.content))

# Create the prompt
prompt = Vision("Describe the image", get_image("https://picsum.photos/id/237/400/300"))

# Generate text
response = model(prompt)
print(response) # The image shows a black puppy with a curious and attentive expression.

Asynchronous Calls

Ollama supports asynchronous operations by passing an AsyncClient instead of a regular Client. This returns an AsyncOllama model instance that supports async/await patterns.

Basic Async Generation

import asyncio
import outlines
import ollama

async def generate_text():
    # Create an async model
    async_client = ollama.AsyncClient()
    async_model = outlines.from_ollama(async_client, "qwen2.5vl:3b")

    result = await async_model("Write a haiku about Python.")
    print(result)

asyncio.run(generate_text())

Async Streaming

The async model also supports streaming with async iteration:

import asyncio
import outlines
import ollama

async def stream_text():
    async_client = ollama.AsyncClient()
    async_model = outlines.from_ollama(async_client, "qwen2.5vl:3b")

    async for chunk in async_model.stream("Tell me a story about a robot."):
        print(chunk, end="")

asyncio.run(stream_text())

Concurrent Async Requests

One of the main benefits of async calls is the ability to make multiple concurrent requests:

import asyncio
import outlines
import ollama

async def generate_multiple():
    async_client = ollama.AsyncClient()
    async_model = outlines.from_ollama(async_client, "qwen2.5vl:3b")

    # Define multiple prompts
    prompts = [
        "Write a tagline for a coffee shop.",
        "Write a tagline for a bookstore.",
        "Write a tagline for a gym."
    ]

    tasks = [async_model(prompt) for prompt in prompts]
    results = await asyncio.gather(*tasks)

    for prompt, result in zip(prompts, results):
        print(f"{prompt}\n{result}\n")

asyncio.run(generate_multiple())

Structured Generation

Ollama only provides support for structured generation based on a JSON schema. To use it, call the model with a JSON schema object as an output_type on top of your prompt.

For instance:

from typing import List
from pydantic import BaseModel
import ollama
import outlines

class Character(BaseModel):
    name: str
    age: int
    skills: List[str]

# Create the model
model = outlines.from_ollama(ollama.Client(), "tinyllama")

# Call it with the output type to generate structured text
result = model("Create a character", Character)
print(result) # '{"name": "Evelyn", "age": 34, "skills": ["archery", "stealth", "alchemy"]}'
print(Character.model_validate_json(result)) # name=Evelyn, age=34, skills=['archery', 'stealth', 'alchemy']

Inference arguments

When calling the model, you can provide keyword arguments that will be passed down to the generate method of the Ollama client.

Consult the Ollama REST API documentation for the full list of inference parameters.