OpenAI and compatible APIs
Installation
You need to install the openai
library to be able to use the OpenAI API in Outlines. Or alternatively:
OpenAI models
Outlines supports models available via the OpenAI Chat API, e.g. GPT-4o, ChatGPT and GPT-4. You can initialize the model by passing the model name to outlines.models.openai
:
Check the OpenAI documentation for an up-to-date list of available models. You can pass any parameter you would pass to openai.AsyncOpenAI
as keyword arguments:
import os
from outlines import models
model = models.openai(
"gpt-4o-mini",
api_key=os.environ["OPENAI_API_KEY"]
)
The following table enumerates the possible parameters. Refer to the OpenAI SDK's code for an up-to-date list.
Parameters:
Parameters | Type | Description | Default |
---|---|---|---|
api_key |
str |
OpenAI API key. Infered from OPENAI_API_KEY if not specified |
None |
organization |
str |
OpenAI organization id. Infered from OPENAI_ORG_ID if not specified |
None |
project |
str |
OpenAI project id. Infered from OPENAI_PROJECT_ID if not specified. |
None |
base_url |
str | https.URL |
Base URL for the endpoint. Infered from OPENAI_BASE_URL if no specified. |
None |
timeout |
float |
Request timeout. | NOT_GIVEN |
max_retries |
int |
Maximum number of retries for failing requests | 2 |
default_headers |
Mapping[str, str] |
Default HTTP headers | None |
default_query |
Mapping[str, str] |
Custom parameters added to the HTTP queries | None |
http_client |
https.AsyncClient |
User-specified httpx client |
None |
Azure OpenAI models
Outlines also supports Azure OpenAI models:
from outlines import models
model = models.azure_openai(
"azure-deployment-name",
"gpt-4o-mini",
api_version="2024-07-18",
azure_endpoint="https://example-endpoint.openai.azure.com",
)
Why do I need to specify model and deployment name?
The model name is needed to load the correct tokenizer for the model. The tokenizer is necessary for structured generation.
You can pass any parameter you would pass to openai.AsyncAzureOpenAI
. You can consult the OpenAI SDK's code for an up-to-date list.
Parameters:
Parameters | Type | Description | Default |
---|---|---|---|
azure_endpoint |
str |
Azure endpoint, including the resource. Infered from AZURE_OPENAI_ENDPOINT if not specified |
None |
api_version |
str |
API version. Infered from AZURE_OPENAI_API_KEY if not specified |
None |
api_key |
str |
OpenAI API key. Infered from OPENAI_API_KEY if not specified |
None |
azure_ad_token |
str |
Azure active directory token. Inference from AZURE_OPENAI_AD_TOKEN if not specified |
None |
azure_ad_token_provider |
AzureADTokenProvider |
A function that returns an Azure Active Directory token | None |
organization |
str |
OpenAI organization id. Infered from OPENAI_ORG_ID if not specified |
None |
project |
str |
OpenAI project id. Infered from OPENAI_PROJECT_ID if not specified. |
None |
base_url |
str | https.URL |
Base URL for the endpoint. Infered from OPENAI_BASE_URL if not specified. |
None |
timeout |
float |
Request timeout. | NOT_GIVEN |
max_retries |
int |
Maximum number of retries for failing requests | 2 |
default_headers |
Mapping[str, str] |
Default HTTP headers | None |
default_query |
Mapping[str, str] |
Custom parameters added to the HTTP queries | None |
http_client |
https.AsyncClient |
User-specified httpx client |
None |
Models that follow the OpenAI standard
Outlines supports models that follow the OpenAI standard. You will need to initialize the OpenAI client properly configured and pass it to outlines.models.openai
import os
from openai import AsyncOpenAI
from outlines import models
from outlines.models.openai import OpenAIConfig
client = AsyncOpenAI(
api_key=os.environ.get("PROVIDER_KEY"),
base_url="http://other.provider.server.com"
)
config = OpenAIConfig("model_name")
model = models.openai(client, config)
Warning
You need to pass the async client to be able to do batch inference.
Structured Generation Support
Outlines provides support for OpenAI Structured Outputs via outlines.generate.json
, outlines.generate.choice
from pydantic import BaseModel, ConfigDict
import outlines.models as models
from outlines import generate
model = models.openai("gpt-4o-mini")
class Person(BaseModel):
model_config = ConfigDict(extra='forbid') # required for openai
first_name: str
last_name: str
age: int
generate.json(model, Person)
generator("current indian prime minister on january 1st 2023")
# Person(first_name='Narendra', last_name='Modi', age=72)
generator = generate.choice(model, ["Chicken", "Egg"])
print(generator("Which came first?"))
# Chicken
Warning
Structured generation support only provided to OpenAI-compatible endpoints which conform to OpenAI's standard. Additionally, generate.regex
and generate.cfg
are not supported.
Advanced configuration
For more advanced configuration option, such as support proxy, please consult the OpenAI SDK's documentation:
from openai import AsyncOpenAI, DefaultHttpxClient
from outlines import models
from outlines.models.openai import OpenAIConfig
client = AsyncOpenAI(
base_url="http://my.test.server.example.com:8083",
http_client=DefaultHttpxClient(
proxies="http://my.test.proxy.example.com",
transport=httpx.HTTPTransport(local_address="0.0.0.0"),
),
)
config = OpenAIConfig("model_name")
model = models.openai(client, config)
It is possible to specify the values for seed
, presence_penalty
, frequence_penalty
, top_p
by passing an instance of OpenAIConfig
when initializing the model:
from outlines.models.openai import OpenAIConfig
from outlines import models
config = OpenAIConfig(
presence_penalty=1.,
frequency_penalty=1.,
top_p=.95,
seed=0,
)
model = models.openai("gpt-4o-mini", config)
Monitoring API use
It is important to be able to track your API usage when working with OpenAI's API. The number of prompt tokens and completion tokens is directly accessible via the model instance:
from openai import AsyncOpenAI
import outlines.models
model = models.openai("gpt-4o")
print(model.prompt_tokens)
# 0
print(model.completion_tokens)
# 0
These numbers are updated every time you call the model.