Generation
Once an Outlines model is constructed you can use outlines.generate
to generate text. Standard LLM generation is possible via outlines.generate.text
, along with a variety of structured generation methods described below. (For a detailed technical explanation of how structured generation works, you may review the Structured Generation Explanation page)
Before generating text, you must construct an outlines.model
. Example:
import outlines
model = outlines.models.transformers("microsoft/Phi-3-mini-4k-instruct", device="cuda")
Text generator
generator = outlines.generate.text(model)
result = generator("Question: What's 2+2? Answer:", max_tokens=100)
print(result)
# The answer is 4
# Outlines also supports streaming output
stream = generator.stream("What's 2+2?", max_tokens=4)
for i in range(5):
token = next(stream)
print(repr(token))
# '2'
# '+'
# '2'
# ' equals'
# '4'
Multi-label classification
Outlines allows you to do multi-label classification by guiding the model so it can only output either of the specified choices:
import outlines
model = outlines.models.transformers("microsoft/Phi-3-mini-128k-instruct")
generator = outlines.generate.choice(model, ["Blue", "Red", "Yellow"])
color = generator("What is the closest color to Indigo? ")
print(color)
# Blue
JSON-structured generation
Outlines can guide models so that they output valid JSON 100% of the time. You can either specify the structure using Pydantic or a string that contains a JSON Schema:
from enum import Enum
from pydantic import BaseModel, constr, conint
import outlines
class Armor(str, Enum):
leather = "leather"
chainmail = "chainmail"
plate = "plate"
class Character(BaseModel):
name: constr(max_length=10)
age: conint(gt=18, lt=99)
armor: Armor
strength: conint(gt=1, lt=100)
model = outlines.models.transformers("microsoft/Phi-3-mini-128k-instruct")
generator = outlines.generate.json(model, Character)
character = generator(
"Generate a new character for my awesome game: "
+ "name, age (between 1 and 99), armor and strength. "
)
print(character)
# name='Orla' age=21 armor=<Armor.plate: 'plate'> strength=8
import outlines
schema = """{
"$defs": {
"Armor": {
"enum": ["leather", "chainmail", "plate"],
"title": "Armor",
"type": "string"
}
},
"properties": {
"name": {"maxLength": 10, "title": "Name", "type": "string"},
"age": {"title": "Age", "type": "integer"},
"armor": {"$ref": "#/$defs/Armor"},
"strength": {"title": "Strength", "type": "integer"}\
},
"required": ["name", "age", "armor", "strength"],
"title": "Character",
"type": "object"
}"""
model = outlines.models.transformers("microsoft/Phi-3-mini-128k-instruct")
generator = outlines.generate.json(model, schema)
character = generator(
"Generate a new character for my awesome game: "
+ "name, age (between 1 and 99), armor and strength. "
)
print(character)
# {'name': 'Yuki', 'age': 24, 'armor': 'plate', 'strength': 3}
Note
We advise you to constrain the length of the strings fields when first testing your schema, especially with small models.
Grammar-structured generation
Outlines also allows to generate text that is valid to any context-free grammar (CFG) in the EBNF format. Grammars can be intimidating, but they are a very powerful tool! Indeed, they determine the syntax of every programming language, valid chess moves, molecule structure, can help with procedural graphics generation, etc.
Here we show a simple example of a grammar that defines arithmetic operations:
from outlines import models, generate
arithmetic_grammar = """
?start: sum
?sum: product
| sum "+" product -> add
| sum "-" product -> sub
?product: atom
| product "*" atom -> mul
| product "/" atom -> div
?atom: NUMBER -> number
| "-" atom -> neg
| "(" sum ")"
%import common.NUMBER
%import common.WS_INLINE
%ignore WS_INLINE
"""
model = models.transformers("microsoft/Phi-3-mini-128k-instruct")
generator = generate.cfg(model, arithmetic_grammar, max_tokens=100)
result = generator("Question: How can you write 5*5 using addition?\nAnswer:")
print(result)
# 5+5+5+5+5
EBNF grammars can be cumbersome to write. This is why Outlines provides grammar definitions in the outlines.grammars.
module
from outlines import models, generate, grammars
model = models.transformers("microsoft/Phi-3-mini-128k-instruct")
generator = generate.cfg(model, grammars.arithmetic, max_tokens=100)
result = generator("Question: How can you write 5*5 using addition?\nAnswer:")
print(result)
# 5+5+5+5+5
The available grammars are listed here.
Regex-structured generation
Slightly simpler, but no less useful, Outlines can generate text that is in the language of a regular expression. For instance to force the model to generate IP addresses:
from outlines import models, generate
model = models.transformers("microsoft/Phi-3-mini-128k-instruct")
regex_str = r"((25[0-5]|2[0-4]\d|[01]?\d\d?)\.){3}(25[0-5]|2[0-4]\d|[01]?\d\d?)"
generator = generate.regex(model, regex_str)
result = generator("What is the IP address of localhost?\nIP: ")
print(result)
# 127.0.0.100
Generate a given Python type
We provide a shortcut to regex-structured generation for simple use cases. Pass a Python type to the outlines.generate.format
function and the LLM will output text that matches this type: