vLLM Offline
Outlines provides an integration with vLLM using the vllm library. This model allows you to use vLLM in the "Offline Inference" mode, meaning that text generation happens within the model, there is no separate server. If you want to use vLLM with a server, see the VLLM model documentation.
Installation
You need to install the vllm library to be able to use the VLLMOffline model: pip install vllm. Due to a library version conflict between outlines and vllm, you MUST install vllm before installing outlines.
When installing outlines (after having first installed vllm), you may encounter the following error: ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. You can safely ignore it.
See the vLLM documentation for instructions on how to install vLLM for CPU, ROCm...
Model Initialization
To load the model, you can use the from_vllm_offline function. The single argument of the function is a LLM model instance from the vllm library. You will then receive a VLLMOffline model instance you can use to generate text.
Consult the LLM class API reference for detailed information on how to create an LLM instance and on the various available parameters.
For instance:
import outlines
from vllm import LLM
# Create the model
model = outlines.from_vllm_offline(
LLM("microsoft/Phi-3-mini-4k-instruct")
)
Note
When initializing the vllm.LLM object, you can specify a guided_decoding_backend to choose what library will be used by vLLM to constrain the generation. Consult the vLLM documentation on structured output for the list of possible values.
Text Generation
Once you've created your Outlines VLLMOffline model instance, you're all set to generate text with this provider. You can simply call the model with a prompt.
For instance:
import outlines
from vllm import LLM
# Create the model
model = outlines.from_vllm_offline(
LLM("microsoft/Phi-3-mini-4k-instruct")
)
# Call it to generate text
response = model("What's the capital of Latvia?", max_tokens=20)
print(response) # 'Riga'
Chat
You can also use chat inputs with the VLLMOffline model. To do so, call the model with a Chat instance. The content of messsage within the chat can be vision inputs as described above.
For instance:
import outlines
from vllm import LLM
from outlines.inputs import Chat
# Create the model
model = outlines.from_vllm_offline(
LLM("microsoft/Phi-3-mini-4k-instruct")
)
# Create the chat prompt
prompt = Chat([
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "What's the capital of Latvia?"},
])
# Call the model to generate a response
response = model(prompt, max_tokens=50)
print(response) # 'Riga'
Streaming
The VLLMOffline model supports streaming through the stream method.
For instance:
import outlines
from vllm import LLM
# Create the model
model = outlines.from_vllm_offline(
LLM("microsoft/Phi-3-mini-4k-instruct")
)
# Stream the response
for chunk in model.stream("Tell me a short story about a cat.", max_tokens=50):
print(chunk) # 'Once...'
Batching
Finally, the VLLMOffline model also supports batching through the batch method. To use it, provide a list of prompts (using the formats described above) to the batch method. You will receive as a result a list of completions.
For instance:
import outlines
from vllm import LLM
# Create the model
model = outlines.from_vllm_offline(
LLM("microsoft/Phi-3-mini-4k-instruct")
)
# Create a list of prompts that will be used in a single batch
prompts = [
"What's the capital of Lithuania?",
"What's the capital of Latvia?",
"What's the capital of Estonia?"
]
# Call it to generate text
result = model.batch(prompts, max_new_tokens=20)
print(result) # ['Vilnius', 'Riga', 'Tallinn']
Structured Generation
The VLLMOffline model supports all output types available in Outlines. Simply provide an output_type after the prompt when calling the model.
Simple Type
import outlines
from vllm import LLM
output_type = int
model = outlines.from_vllm_offline(
LLM("microsoft/Phi-3-mini-4k-instruct")
)
result = model("How many countries are there in the world?", output_type)
print(result) # '200'
JSON Schema
import outlines
from vllm import LLM, SamplingParams
from typing import List
from pydantic import BaseModel
class Character(BaseModel):
name: str
age: int
skills: List[str]
model = outlines.from_vllm_offline(
LLM("microsoft/Phi-3-mini-4k-instruct")
)
result = model("Create a character.", output_type=Character, sampling_params=SamplingParams(frequency_penalty=1.5, max_tokens=200))
print(result) # '{"name": "Evelyn", "age": 34, "skills": ["archery", "stealth", "alchemy"]}'
print(Character.model_validate_json(result)) # name=Evelyn, age=34, skills=['archery', 'stealth', 'alchemy']
Multiple Choice
from typing import Literal
import outlines
from vllm import LLM, SamplingParams
output_type = Literal["Paris", "London", "Rome", "Berlin"]
model = outlines.from_vllm_offline(
LLM("microsoft/Phi-3-mini-4k-instruct")
)
result = model("What is the capital of France?", output_type, sampling_params=SamplingParams(temperature=0))
print(result) # 'Paris'
Regex
import outlines
from vllm import LLM, SamplingParams
from outlines.types import Regex
output_type = Regex(r"\d{3}-\d{2}-\d{4}")
model = outlines.from_vllm_offline(
LLM("microsoft/Phi-3-mini-4k-instruct")
)
result = model("Generate a fake social security number.", output_type, sampling_params=SamplingParams(top_p=0.1))
print(result) # '782-32-3789'
Context-Free Grammar
import outlines
from vllm import LLM, SamplingParams
from outlines.types import CFG
arithmetic_grammar = """
?start: sum
?sum: product
| sum "+" product -> add
| sum "-" product -> sub
?product: atom
| product "*" atom -> mul
| product "/" atom -> div
?atom: NUMBER -> number
| "-" atom -> neg
| "(" sum ")"
%import common.NUMBER
%import common.WS_INLINE
%ignore WS_INLINE
"""
output_type = CFG(arithmetic_grammar)
model = outlines.from_vllm_offline(
LLM("microsoft/Phi-3-mini-4k-instruct")
)
result = model("Write an addition.", output_type)
print(result) # '23 + 48'
Inference Arguments
When calling the model, you can provide optional parameters on top of the prompt and the output type. Those will be passed on to the generate method of the LLM model instance. An argument of particular interest is sampling_params. It takes as a value a vllm.SamplingParams instance containing parameters such as max_tokens or temperature.
See the vLLM documentation on sampling parameters for more information on inference parameters.